

A COMPOSITE, MULTILAYERED CYLINDRICAL DIELECTRIC RESONATOR

Szymon Maj[†] and Marian Pospieszalski^{*}[†]Institute of Electronic Fundamentals, Warsaw Tech. Univ., Warsaw, Poland^{*}National Radio Astronomy Observatory, Charlottesville, Virginia 22903

Abstract

The analysis of TE modes in a composite multilayered cylindrical dielectric resonator is presented. All cylindrical dielectric resonator structures which have found some practical applications can be treated as a special case of the structure under consideration. These include: single resonator, double resonator, ring resonator, resonator in microstrip, inhomogeneous resonator and others. A new rigorous method of determining the field distribution and resonant frequency of this resonator is presented. By this method the solution is obtained in a form of successive approximations converging to an exact solution. The analysis is applied in detail to the lowest frequency TE mode of double dielectric resonator.

Introduction

In the past several years dielectric resonators have found numerous applications in miniature microwave components and subsystems [1]. Many different dielectric resonator structures usually possessing circular symmetry and excited in TE mode were employed. They were: dielectric sample between parallel conducting plates [2], [3], dielectric sample on microstrip substrate [2], [4], [5], inhomogeneous dielectric resonator [6], double dielectric resonator [7], [8], ring dielectric resonator [8], to mention a few. All of these structures can be treated as a special case of a structure shown schematically in Figure 1, called a composite multilayered cylindrical dielectric resonator. The method of analysis of TE modes in this structure and an example of application to the lowest TE mode of a double dielectric resonator is presented.

Method of Analysis

For TE-modes fundamental equation to be solved is:

$$\frac{\partial^2 E_\phi}{\partial z^2} + \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial (r E_\phi)}{\partial r} \right] + k_0^2 \epsilon_r(r, z) E_\phi = 0 \quad (1)$$

which is obtained in elementary way from Maxwell's equations. Equation (1) is solved separately in regions I, II, III (Figure 1) by the method

of separation of variables, as ϵ_r is only a function of z within each region.

$$As E_\phi^M(r, z) = \Phi_m^M(z) U_m^M(r) \quad M = I, II, III \quad (2)$$

equation (1) becomes:

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d(r U_m^M(r))}{dr} \right] + t_m^M U_m^M(r) = 0 \quad (3)$$

$$\frac{d^2 \Phi_m^M(z)}{dz^2} + (k_0^2 \epsilon_r^M(z) - t_m^M) \Phi_m^M(z) = 0 \quad (4)$$

Let $d_i^M = \sum_{j=1}^i h_j^M$ for $i = 1, 2, \dots, \lambda^M$, then in every

$$interval [d_{i-1}^M, d_i^M]: (v_{mi}^M)^2 = k_0^2 \epsilon_i^M - t_m^M \quad (5)$$

and the functions $\Phi_m^M(z)$, orthogonal in the interval $[0, L']$, satisfying (4) and boundary conditions can be constructed as follows:

$$-in interval [0, d_1^M]: \Phi_m^M(z) = \frac{1}{v_{m1}^M} \sin(v_{m1}^M z) \quad (6)$$

$$-in interval [d_{i-1}^M, d_i^M]:$$

$$\Phi_m^M = \frac{\Phi_m^M(d_i^M)}{v_{mi}^M} \sin(v_{mi}^M(z - d_i^M)) + \Phi_m^M(d_i^M) \cos(v_{mi}^M(z - d_i^M))$$

$$where \Phi_m^M(d_i^M) = \frac{d\Phi_m^M(z)}{dz} \Big|_{z = (d_i^M)} \quad (7)$$

For $z = L'$, t_m^M of equation (5) has to be chosen to satisfy:

$$\Phi_m^M(L') = \Phi_m^M(d_i^M) = 0$$

The solution of (3) is given by linear combinations of appropriate Bessel functions

$$J_1(h_m^M r) \text{ and } N_1(h_m^M r) \text{ or } I_1(h_m^M r) \text{ and } K_1(h_m^M r)$$

$$where h_m^M = \sqrt{|t_m^M|}.$$

^{*}The National Radio Astronomy Observatory is operated by Associated Universities, Inc. under contract with the National Science Foundation.

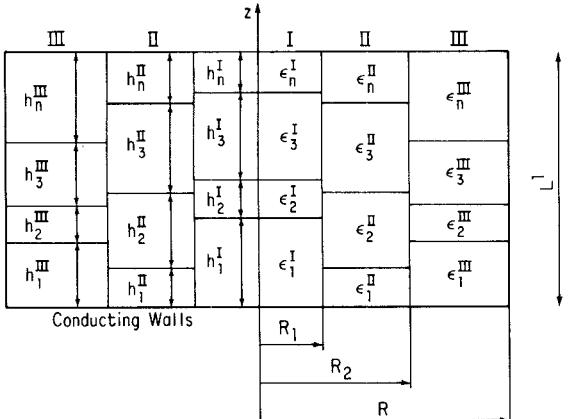


Fig. 1. A composite multilayered cylindrical dielectric resonator structure.

Therefore E_ϕ is given by:

$$\text{in region I: } E_\phi^I(r, z) = \sum_{m=1}^{\infty} a_m^I \phi_m^I(z) J_1(h_m^I r) \quad (8a)$$

$$\text{in region II: } E_\phi^{II}(r, z) = \sum_{m=1}^{\infty} [a_m^{II} J_1(h_m^{II} r) + b_m^{II} N_1(h_m^{II} r)] \phi_m^{II}(z) \quad (8b)$$

$$\text{in region III: } E_\phi^{III}(r, z) = \sum_{m=1}^{\infty} a_m^{III} [N_1(h_m^{III} r) J_1(h_m^{III} R) - J_1(h_m^{III} r) N_1(h_m^{III} R)] \phi_m^{III}(z) \quad (8c)$$

The application of boundary conditions at $r = R_1$ and $r = R_2$ results in the infinite set of homogeneous linear equations, which possesses nontrivial solution if the determinant of the coefficient matrix \mathbf{W} vanishes. Namely

$$\det\{\mathbf{W}\} = \det\{\mathbf{W}_A^I\}^{-1} \mathbf{W}_B^I - \{\mathbf{W}_A^{III}\}^{-1} \mathbf{W}_B^{III} = 0 \quad (9)$$

The elements of matrices \mathbf{W}_A^I , \mathbf{W}_B^I , \mathbf{W}_A^{III} , \mathbf{W}_B^{III} are given by:

$$\text{-matrix } \mathbf{W}_A^I: W_{im}^{II, I} = \langle \phi_m^{II}, \phi_i^I \rangle = \left[\frac{J_1(h_m^{II} R_1)}{J_1(h_i^I R_1)} - \frac{h_m^{II} J_0(h_m^{II} R_1)}{h_i^I J_0(h_i^I R_1)} \right]$$

$$\text{-matrix } \mathbf{W}_B^I: W_{im}^{II, I} = \langle \phi_m^{II}, \phi_i^I \rangle = \left[\frac{h_m^{II} N_0(h_m^{II} R_1)}{h_i^I J_0(h_i^I R_1)} - \frac{N_1(h_m^{II} R_1)}{J_1(h_i^I R_1)} \right]$$

$$\text{-matrix } \mathbf{W}_A^{III}: W_{im}^{III, III} = \langle \phi_m^{III}, \phi_i^{III} \rangle = \left[\frac{J_1(h_m^{III} R_2)}{N_1(h_i^{III} R_2) J_1(h_i^{III} R_2) - J_1(h_i^{III} R_2) N_1(h_i^{III} R_2)} - \frac{h_m^{III} J_0(h_m^{III} R_2)}{h_i^{III} [N_0(h_i^{III} R_2) J_1(h_i^{III} R_2) - J_0(h_i^{III} R_2) N_1(h_i^{III} R_2)]} \right]$$

$$\text{-matrix } \mathbf{W}_B^{III}: W_{im}^{III, III} = \langle \phi_m^{III}, \phi_i^{III} \rangle = \left[\frac{h_m^{III} N_0(h_m^{III} R_2)}{h_i^{III} [N_0(h_i^{III} R_2) J_1(h_i^{III} R_2) - J_0(h_i^{III} R_2) N_1(h_i^{III} R_2)]} - \frac{N_1(h_m^{III} R_2)}{N_1(h_i^{III} R_2) J_1(h_i^{III} R_2) - J_1(h_i^{III} R_2) N_1(h_i^{III} R_2)} \right]$$

$$\text{where } \langle \phi, \psi \rangle = \int_0^{L'} \phi(z) \psi(z) dz$$

In the eqs. (9) and (10) for $t_j^M < 0$ the functions J_0 , N_0 , J_1 , N_1 should be replaced by I_0 , K_0 , I_1 , K_1 , respectively. Eq. (9) can be solved to find the resonant frequency to any desired accuracy by appropriate choice of matrix \mathbf{W} dimension. Then coefficients a_m^M and b_m^M can be found to determine the field distribution inside the resonator.

Double Dielectric Resonator Problem

The double dielectric resonator structure is shown in Figure 2. The samples 2 and 4 are made of high- ϵ dielectric material and samples 1, 3, 5 are made of low- ϵ dielectric material. This structure can be considered as a special case of the structure in Figure 1 if $R_1 = R_2$ and $R \rightarrow \infty$.

A comparison between the resonant frequency of lowest TE-mode computed by this method, three different approximate methods, and experimental data are shown in Figure 3 and Table I.

The solution for the dimension of the matrix $[\mathbf{W}] N = 10$ and experimental data agree within the estimated accuracy of the experiment. The solution for $N = 1$, which results in very simple, calculator programmable model, provides much better accuracy than any of the other approximate methods of analysis, that is: a) magnetic wall waveguide model [7]; b) dielectric waveguide model [10]; c) modified dielectric waveguide model [2]. The accurate method of analysis presented for single dielectric resonator in [3] runs into computational problems for double resonator case. The comparison of these two accurate methods in the case of a single dielectric resonator shows faster convergence of the method outlined in this paper.

Conclusions

The method of analysis outlined in this paper allows investigation of much more complex resonant structures than any of the rigorous methods previously reported (for instance [3, 9, 11]). This method should prove to be very useful in: 1) design of dielectric resonators with pre-determined temperature dependence of the resonant frequency; 2) investigation of tuning methods; 3) design of supporting structures; 4) measurement of microwave properties of dielectrics.

$$\left[\frac{h_m^{III} J_0(h_m^{III} R_2)}{h_i^{III} [N_0(h_i^{III} R_2) J_1(h_i^{III} R_2) - J_0(h_i^{III} R_2) N_1(h_i^{III} R_2)]} - \frac{N_1(h_m^{III} R_2)}{N_1(h_i^{III} R_2) J_1(h_i^{III} R_2) - J_1(h_i^{III} R_2) N_1(h_i^{III} R_2)} \right] \quad (10)$$

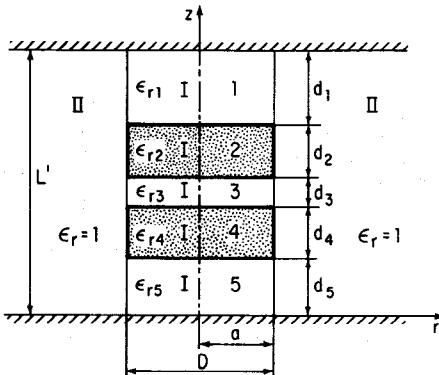


Fig. 2. A double cylindrical dielectric resonator structure.

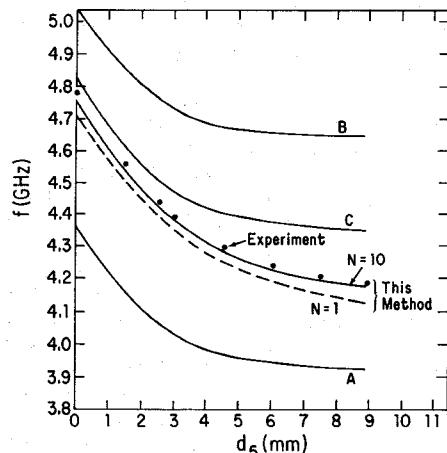


Fig. 3. Comparison between the resonant frequency of lowest TE-mode for the structure in Fig. 2 computed by the new method for $N=1$ and $N=10$, three different approximate methods and experimental data.

$d_1=1.92$ mm, $d_2=d_4=3.52$ mm, $d_3=3.48$ mm, $D=14.98$ mm, $\epsilon_{r1}=\epsilon_{r3}=\epsilon_{r5}=2.04$, $\epsilon_{r2}=\epsilon_{r4}=34.1$.

A - magnetic wall waveguide model [7]; B - dielectric waveguide model [10]; C - modified dielectric waveguide model [2].

References

- [1] J. K. Ploudre, C. L. Ren, "Application of dielectric resonators in microwave components," IEEE Trans. on MTT, vol. MTT-29, pp. 754-770, August 1981.
- [2] M. Pospieszalski, "Cylindrical dielectric resonators and their application in TEM line microwave circuits," IEEE Trans. on MTT, vol. MTT-27, pp. 233-239, March 1979. (correction: vol. MTT-29, p. 1118, Oct. 1981.)
- [3] M. Jaworski, M. Pospieszalski, "An accurate solution of a cylindrical dielectric resonator problem," IEEE Trans. on MTT, vol. MTT-27, p. 638-643, July 1979. (correction: vol. MTT-28, p. 673, June 1980.)
- [4] T. Higashi, T. Makino, "Resonant frequency stability of the dielectric resonator on a dielectric substrate," IEEE Trans. on MTT, vol. MTT-29, pp. 1048-1052, Oct. 1981.
- [5] Y. Shimoda, H. Tominuro, K. Onulu, "A proposal of a new dielectric resonator construction for MIC's," IEEE Trans. on MTT, vol. MTT-31, pp. 527-531, July 1983.
- [6] R. Bonetti, A. Atia, "Design of cylindrical dielectric resonators in inhomogeneous media," IEEE Trans. on MTT, vol. MTT-29, pp. 323-326, April 1981.
- [7] S. Fiedzuszko, A. Jeleński, "Double dielectric resonator," IEEE Trans. on MTT, vol. MTT-19, pp. 779-781, September 1971.
- [8] A. Karp, H. V. Shaw, D. K. Winslow, "Circuit properties of microwave dielectric resonators," IEEE Trans. on MTT, vol. MTT-16, pp. 818-828, October 1968.
- [9] D. Maystre, P. Vincent, J. C. Mage, "Theoretical and experimental study of a cylindrical dielectric resonator," IEEE Trans. on MTT, vol. MTT-31, pp. 844-848, October 1983.
- [10] T. Itoh, R. Rudokas, "New method for computing the resonant frequencies of dielectric resonators," IEEE Trans. on MTT, vol. MTT-25, pp. 52-54, January 1977.
- [11] K. A. Zaki, A. E. Atia, "Resonant frequencies of dielectric loaded waveguide cavities," Proc. 1983 Int. Microwave Symp., pp. 421-423, Boston, MA, June 1983.

DIMENSIONS [mm]			EXPER.	APPROXIMATE METHODS						THIS METHOD				
d_1	d_3	d_5		A		B		C		N=1		N=10		
d_1	d_3	d_5	f_o MHz	f_o MHz	Error %	f_o MHz	f_o MHz	Error %	f_o MHz	f_o MHz	Error %	f_o MHz	f_o MHz	Error %
1.92	3.48	8.93	4182	3926	6.1	4648	11.2	4357	4.2	4128	1.2	4180	0.05	
1.92	3.48	2.48	4433	4071	7.9	4761	7.7	4512	2.1	4394	0.6	4420	0.30	
2.48	1.40	4.48	4061	3716	8.1	4319	6.8	4138	2.3	4034	0.2	4043	0.45	
2.48	1.40	0.0	4541	4126	9.0	4735	4.5	4576	0.9	4528	0.1	4533	0.18	

Table I. Comparison between the resonant frequency of lowest TE-mode for the structure in Fig. 2 computed by the new method for $N=1$ and $N=10$, three different approximate methods and experimental data: A - magnetic wall waveguide model [7], B - dielectric waveguide model [10], C - modified dielectric waveguide model [2]. $d_2=d_4=3.52$ mm, $D=14.98$ mm, $\epsilon_{r2}=\epsilon_{r4}=34.1$, $\epsilon_{r1}=\epsilon_{r3}=\epsilon_{r5}=2.04$